Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37849283

RESUMEN

British Columbia (BC) is the lead producer of sweet cherries in Canada with more than 2,000 ha in production and a farm gate value of over CAD$100 million annually. Since 2010, an outbreak of little cherry disease caused by Little cherry virus 1 (LChV1) and Little cherry virus 2 (LChV2), as well as X-disease (XD) caused by 'Candidatus Phytoplasma pruni' has caused significant economic losses in neighboring Washington State (WA), USA. LChV1 and LChV2 have long been known to occur in BC (Theilmann et al. 2002); however, 'Ca. P. pruni' has not yet been reported in BC. Due to its geographical proximity to WA State, the BC cherry industry expressed significant concerns about the possible presence of the phytoplasma in cherry orchards. Accordingly, the main objective of this study was to survey cherry orchards to determine whether 'Ca. P. pruni' was present in symptomatic trees in BC. A total of 118 samples of leaves and fruit stems from individual symptomatic trees were collected prior to harvest from nine cherry orchards and one nectarine orchard in the Okanagan and Similkameen Valleys in BC. Characteristic symptoms included small and misshapen fruit with poor color development. Samples were submitted to AGNEMA, LLC (Pasco, WA) for testing using qPCR TaqMan assays for LChV1 (Katsiani et al. 2018), LChV2 (Shires et al. 2022) and 'Ca. P. pruni' (Kogej et al. 2020). Test results showed 21 samples (17.8%) from three cherry orchards positive for LChV2 and 2 samples (1.7%) from one cherry orchard positive for 'Ca. P. pruni'. In order to confirm the identification of 'Ca. P. pruni', part of the 16S ribosomal RNA gene was amplified by nested PCR using the P1/P7 followed by R16F2n/R2 primer sets (Gundersen and Lee 1996) and Sanger sequenced. BC-XD-Pa-1 (GenBank Acc. No. OR539920) and BC-XD-Pa-2 (OR537699) were identical to one another and showed 99.92% identity to the 'Ca. P. pruni' reference strain CX-95 (JQ044397). Analysis using iPhyClassifier (Zhou et al. 2009) indicated that they were 16SrIII-A strains. Interestingly, the two partial 16S sequences showed 100% nucleotide identity to strain 10324 (MH810016) and others from WA. For additional confirmation, partial secA (Hodgetts et al. 2008) and secY (Lee et al. 2010) translocases were amplified and sequenced. As with the 16S sequences, secY sequences (OR542980, OR542981) showed 99.92% nucleotide identity to strain CX-95 (JQ268249), and 100% to strain 10324 (MH810035). The secA sequences (OR542978, OR542979) had nucleotide identities of 99.77% to strain CX (MW547067), and 100% to the Green Valley strain from California (EU168733). Accordingly, 'Ca. P. Pruni' was confirmed to be present in sweet cherry samples from BC. 'Ca. P. Pruni'-related strains have been previously reported to occur in Canada in commercial poinsettias (Euphorbia pulcherrima) (Arocha-Rosete et al. 2021). To our knowledge, this is the first report of 'Ca. P. Pruni' in sweet cherry in Canada. Due to the important economic value of sweet cherries in BC, these findings are highly significant and represent the first steps towards the development of a surveillance system for early detection of XD, and consequent implementation of management strategies, including vector control. As required by federal and provincial regulations, cherry trees infected with LChV2 and 'Ca. P. Pruni' found in the survey were removed by the growers.

2.
Plant Dis ; 107(12): 3708-3717, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37436216

RESUMEN

Young vine decline (YVD), caused by several taxonomically different fungi, results in the decline and death of grapevines within a few years after planting. Infection can occur in nursery mother blocks and/or at several stages in the nursery propagation process, but the final plant material may remain asymptomatic. Four nurseries that sell ready-to-plant grapevines in Canada were sampled to evaluate the health status with regard to YVD fungi, including Botryosphaeriaceae spp., Cadophora luteo-olivacea, Dactylonectria macrodidyma, Dactylonectria torresensis, Phaeoacremonium minimum, and Phaeomoniella chlamydospora. Plants representing three cultivars, 'Chardonnay', 'Merlot', and 'Pinot noir', either grafted onto '3309C' rootstock or self-rooted, were provided by the nurseries. Samples from the roots, base of the rootstock or self-rooted cultivar, graft-union, and scion were collected from each plant. DNA was extracted, and the total abundance of each fungus was quantified using Droplet Digital PCR. Results revealed that 99% of plants harbored at least one of the fungi studied, with a mean of three different fungal species that were present per grapevine. Droplet Digital PCR results showed that the abundance of the different fungi significantly varied between different sections of each plant, individual plants for each cultivar, and cultivars from the same nursery. Necrosis measurements were recorded from the base of the rootstock or self-rooted cultivars and did not correlate with fungal abundance recorded in that section for each grapevine, but necrosis was consistent across cultivars within nurseries. Five different rootstocks were compared from one nursery, and results showed no differences between rootstocks and their health status. Among all nurseries, C. luteo-olivacea was the most prevalent fungus (97% of the plants), while D. macrodidyma was the least commonly found (13% of the plants). This study shows that ready-to-plant nursery material sold in Canada is likely to be infected with several YVD fungi and that presence and abundance of fungi vary significantly among individual grapevines and nurseries.


Asunto(s)
Jardines , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Canadá , Estado de Salud , Necrosis
3.
J Fungi (Basel) ; 8(4)2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35448640

RESUMEN

Botryosphaeria dieback (BD) is a grapevine trunk disease (GTD) causing significant yield losses and limiting the lifespan of vineyards worldwide. Fungi responsible for BD infect grapevines primarily through pruning wounds, and thus pruning wound protection, using either synthetic chemicals or biological control agents (BCAs), is the main available management strategy. However, no products to control GTDs are currently registered in Canada. With a focus on more sustainable grapevine production, there is an increasing demand for alternatives to chemical products to manage GTDs. Accordingly, the objective of this study was to identify Trichoderma species from grapevines in British Columbia (BC) and evaluate their potential biocontrol activity against BD fungi Diplodia seriata and Neofusicoccum parvum. Phylogenetic analyses identified seven species, including T. asperelloides, T. atroviride, T. harzianum, T. koningii, T. tomentosum, and two novel species, T. canadense and T. viticola. In vitro dual culture antagonistic assays showed several isolates to inhibit fungal pathogen mycelial growth by up to 75%. In planta detached cane assays under controlled greenhouse conditions identified T. asperelloides, T. atroviride and T. canadense isolates from BC as providing 70% to 100% pruning wound protection against BD fungi for up to 21 days after treatment. In addition, these isolates were shown to provide similar or better control when compared against commercial chemical and biocontrol products. This study demonstrates the potential that locally sourced Trichoderma species can have for pruning wound protection against BD fungi, and further supports the evaluation of these isolates under natural field conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...